Package: skipTrack 0.1.1.9000

Luke Duttweiler

skipTrack: A Bayesian Hierarchical Model that Controls for Non-Adherence in Mobile Menstrual Cycle Tracking

Implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.

Authors:Luke Duttweiler [aut, cre, cph]

skipTrack_0.1.1.9000.tar.gz
skipTrack_0.1.1.9000.zip(r-4.5)skipTrack_0.1.1.9000.zip(r-4.4)skipTrack_0.1.1.9000.zip(r-4.3)
skipTrack_0.1.1.9000.tgz(r-4.4-any)skipTrack_0.1.1.9000.tgz(r-4.3-any)
skipTrack_0.1.1.9000.tar.gz(r-4.5-noble)skipTrack_0.1.1.9000.tar.gz(r-4.4-noble)
skipTrack_0.1.1.9000.tgz(r-4.4-emscripten)skipTrack_0.1.1.9000.tgz(r-4.3-emscripten)
skipTrack.pdf |skipTrack.html
skipTrack/json (API)
NEWS

# Install 'skipTrack' in R:
install.packages('skipTrack', repos = c('https://lukeduttweiler.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/lukeduttweiler/skiptrack/issues

On CRAN:

5.06 score 4 scripts 114 downloads 5 exports 80 dependencies

Last updated 3 months agofrom:2939faa83d. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:skipTrack.diagnosticsskipTrack.fitskipTrack.resultsskipTrack.simulateskipTrack.visualize

Dependencies:briocallrclicodacodetoolscolorspacecommonmarkcrayoncurldescdiffobjdigestdoParallelellipseevaluatefansifarverfftwtoolsforeachfsgenMCMCDiagggplot2ggtextglmnetgluegridExtragridtextgtablehighrisobanditeratorsjpegjsonliteknitrlabelingLaplacesDemonlatticelifecyclemagrittrmarkdownMASSMatrixmcmcsemgcvmunsellmvtnormnlmeoptimgpillarpkgbuildpkgconfigpkgloadpngpraiseprocessxpsR6RColorBrewerRcppRcppArmadilloRcppEigenrematch2rlangrprojrootscalesshapestringistringrsurvivaltestthattibbleucminfutf8vctrsviridisLitewaldowithrxfunxml2yaml

Getting Started with the SkipTrack Package

Rendered fromskipTrack_intro.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2024-07-01
Started: 2024-05-03

Readme and manuals

Help Manual

Help pageTopics
Gibbs Step Li - One MCMC step for the Li ModelgibbsStepLi
Perform hyperparameter inference assuming the model given in Li et al. (2022) on a cycle length dataset.liInference
Monte Carlo estimate of negative marginal log-likelihood of Li modellikVec
Runs MCMC algorithm for performing inference using the model from Li et al. (2022)liMCMC
Simulate user tracked menstrual cycle data for an individual using the li model.liSim
Simulate user tracked menstrual cycle data for an individual using the mixture model.mixSim
Plot skipTrack.model objectsplot.skipTrack.model
Draw from Posterior Distribution for Beta ParameterspostBeta
Sample a vector of values from the full conditional posterior of the c_ij vectorpostCij
Perform a Metropolis-Hastings Step for Drawing a New GammapostGamma
Compute random draw from full conditional posterior for lambda_i in Li algorithm.postLambdai
Sample a value from the full conditional posterior of mu_ipostMui
Metropolis-Hastings step to draw a new value for phi.postPhi
Sample a value from the full conditional posterior of pipostPi
Compute M-H draw for pi_i in Li algorithmpostPii
Sample a value from the full conditional posterior of rhopostRho
Compute random draw from full conditional posterior for s_ij in Li algorithm.postSij
Sample a value from the full conditional posterior of tau_ipostTaui
Print skipTrack.model to consoleprint.skipTrack.model
Perform a single step of the MCMC sampling process for skipTracksampleStep
skipTrack MCMC DiagnosticsskipTrack.diagnostics
Fits the skipTrack Model using 1 or more MCMC chainsskipTrack.fit
Perform one chain of MCMC sampling for the skipTrack model.skipTrack.MCMC
Get tables of Inference results from skipTrack.fitskipTrack.results
Simulate user-tracked menstrual cycle data for multiple individualsskipTrack.simulate
Visualize Results from skipTrack.fitskipTrack.visualize
Report skipTrack.model structure to consolestr.skipTrack.model
Simulate user tracked menstrual cycle data for an individual, based on the skipTrack model.stSim
Report skipTrack.model results to consolesummary.skipTrack.model